MORIYAMA et al: CLASSIFICATION OF TARGET BURIED IN THE UNDERGROUND BY RADAR POLARIMETRY

نویسندگان

  • Toshifumi MORIYAMA
  • Masafumi NAKAMURA
  • Yoshio YAMAGUCHI
  • Hiroyoshi YAMADA
چکیده

Manuscript received November 5, 1998. Manuscript revised January 8, 1999. † The authors are with Niigata University, Niigata-shi, 9502181 Japan. †† The author is with University of Illinois at Chicago, IL, 60607-7018, USA. * Presently, with Fujitsu System Integration Laboratories Ltd. ** Presently, with NEC Saitama Corp. SUMMARY This paper discusses the classification of targets buried in the underground by radar polarimetry. The subsurface radar is used for the detection of objects buried beneath the ground surface, such as gas pipes, cables and cavities, or in archeological exploration operation. In addition to target echo, the subsurface radar receives various other echoes, because the underground is inhomogeneous medium. Therefore, the subsurface radar needs to distinguish these echoes. In order to enhance the discrimination capability, we first applied the polarization anisotropy coefficient to distinguish echoes from isotropic targets (plate, sphere) versus anisotropic targets (wire, pipe). It is straightforward to find the man-made target buried in the underground using the polarization anisotropy coefficient. Second, we tried to classify targets using the polarimetric signature approach, in which the characteristic polarization state provides the orientation angle of an anisotropic target. All of these values contribute to the classification of a target. Field experiments using an ultra-wideband (250 MHz to 1 GHz) FM-CW polarimetric radar system were carried out to show the usefulness of radar polarimetry. In this paper, several detection and classification results are demonstrated. It is shown that these techniques improve the detection capability of buried target considerably. key words: radio applications, subsurface radar, FM-CW radar, scattering matrix, polarization anisotropy coefficient, power polarization signature

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ADVANCED CONCEPTS IN POLARIMETRY – PART 2 (Polarimetric Target Classification)

There is currently widespread interest in the development of radar sensors for the detection of surface and buried targets and the remote sensing of land, sea and ice surfaces. An important feature of electromagnetic radiation is its state of polarisation and a wide range of classification algorithms and inversion techniques have recently been developed based on the transformation of polarisati...

متن کامل

Polarimetric Detection of Buried Objects by Fm-cw Radar

The subsurface radar suffers from strong clutter from surface and severe wave attenuation in the underground. This paper presents a unique countermeasure to these problems using a polarimetric FM-CW radar equipped with equivalent time sensitivity control (STC) technique. We first apply the polarimetric filtering principle to suppress surface clutter, then, use an equivalent STC technique suited...

متن کامل

Classification of polarimetric radar images based on SVM and BGSA

Classification of land cover is one of the most important applications of radar polarimetry images. The purpose of image classification is to classify image pixels into different classes based on vector properties of the extractor. Radar imaging systems provide useful information about ground cover by using a wide range of electromagnetic waves to image the Earthchr('39')s surface. The purpose ...

متن کامل

General Linear Chirplet Transform and Radar Target Classification

In this paper, we design an attractivealgorithm aiming to classify moving targets includinghuman, animal, vehicle and drone, at groundsurveillance radar systems. The non-stationary reflectedsignal of the targets is represented with a novelmathematical framework based on behavior of thesignal components in reality. We further propose usingthe generalized linear chirp transform for the analysisst...

متن کامل

Possibility of using GPR Radar to localize human bodies under the rubble caused by an earthquake

Ground penetrating Radar (GPR) is an interesting device that can allow a non-destructive auscultation of the underground without any excavation. It is based on the use of high frequency electromagnetic waves, including reflection or diffraction that allows the detection of buried objects. In this work, we studied the possibility of using GPR for detecting of human targets under the rubble cause...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999